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The coupling between imposed disturbances and capillary instabilities on a liquid jet 
is examined. It is shown that in most physical situations the forcing produces neutral 
waves which can then turn into growing waves as the profile relaxes or may be 
amplified nonlinearly by a mechanism of the type considered by Akylas & Benney 
(1980). The effectiveness of the coupling is expressed quantitatively by numerically 
computed values of the ‘coupling coefficient ’. 

1. Introduction 
It is now believed that the breakup of liquid jets into drops begins with the 

excitation of Rayleigh or capillary instabilities by weak external disturbances. This 
phenomenon waa first studied mathematically (Rayleigh 1878, and others) by 
treating the jet as a doubly infinite parallel flow and determining when that flow 
becomes unstable to temporally growing instability waves. But it was natural for the 
experimentalists to approach this problem by imposing controlled harmonic (usually 
acoustic) disturbances of a single frequency, say w ,  on their flows (either from within 
or from outside their nozzles) which then generate spatially amplifying waves that 
are closely related to the temporally growing instability waves of Rayleigh (1878). 
There are also a number of technological devices, the ink-jet printer and the liquid 
droplet radiator, for example, that rely on the excitation of spatially amplifying 
Rayleigh waves to produce controlled breakup of liquid jets. Keller, Rubinow & Tu 
(1973) analysed the spatially amplifying capillary waves by transforming Rayleigh’s 
(1878) dispersion relation to a moving jet and keeping the frequency real while 
allowing the wavenumber to be complex. They found that the temporal and spatial 
growth rates only agree in the infinite Weber number limit (where the Weber number 
is defined to be (pa/?) q, p and y being the density and surface tension, and a and 
U, being a characteristic length and velocity). The primary purpose of this paper is 
to understand how these instability waves are generated by the externally imposed 
disturbances, or in Morkovin’s (1969) words, to analyse the ‘receptivity’ of the flow. 
Our main interest is in the technologically (and experimentally) important case where 
the wavelength of the imposed disturbance is very long (effectively infinite) compared 
to the wavelength of the Rayleigh instability. The wavelength matching then relies 
on the ‘scattering’ of the imposed disturbance at the nozzle lip, and it is therefore 
necessary to study the semi-infhite jet/semi-infinite nozzle configuration shown in 
figure 1 rather than the doubly infinite jet analysed by Rayleigh (1878), Keller et al. 
(1973), etc. We shall suppose that the flow is excited from within the nozzle and take 
the incident disturbance to be a uniform pulsation of the entire flow, corresponding 
to a plane acoustic wave in the zero-Mach-number limit to which the analysis is 
confined. 
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Similar problems were analysed by Crighton & Leppington (1974) for the Kelvin- 
Helmholtz instability on the vortex sheet behind a semi-infinite flat plate (with zero 
velocity on one side) and by Munt (1977), Rienstra (1981) and Cargill (1979) for the 
Kelvin-Helmholtz instability on a plug-flow jet emanating from a round nozzle. 

In the present case, it is more appropriate to assume that the mean flow has a 
Hagen-Poiseuille or parabolic profile rather than the plug-flow profile analysed by 
Munt (1977), Rienstra (1981), Cargill (1979), Rayleigh (1878) and Keller et al. (1973). 
It turns out that the Rayleigh equation, which governs the unsteady motion within 
the flow, is the same for this profile as it is for the plug flow, so that the problem 
can be solved just as easily for the former profile as for the latter. In  fact, the same 
Rayleigh equation applies to a more general parabolic profile that involves arbitrary 
velocity slip at the wall. 

The mean flow can be treated as independent of the streamwise coordinate for 
purposes of analysing the receptivity problem, i.e. for purposes of determining the 
‘coupling coefficient ’, which relates the initial amplitude of the instability wave to 
that of the imposed disturbance, and the most appropriate profile to use in the 
analysis is the Hagen-Poiseuille profile. But i t  turns out that the spatially growing 
Rayleigh instability waves only exist on this profile for very small Weber numbers, 
and then only for Strouhal numbers (oa/U,) below a very low ‘cutoff’ value. Outside 
of this range they are replaced by a neutral (i.e. non-growing) disturbance that 
propagates downstream from the nozzle lip. But the range of unstable Weber and’ 
Strouhal numbers increases enormously as the mean flow gradually relaxes to a 
plug-flow profile far downstream from the nozzle exit. It is therefore necessary to 
calculate the gradual development of the instability wave from the initially neutral 
disturbance in order to determine the final amplitude of that wave. We do this by 
using the ‘slowly varying approximation ’, which assumes that the local growth rate 
can be calculated by using the local mean flow profile while neglecting variations in 
the streamwise direction. The required local profiles are well described by the 
generalized Hagen-Poiseuille profiles alluded to above. We therefore analyse the 
instability wave for this general class of profiles but evaluate the coupling coefficient 
only for the Hagen-Poiseuille profile and (for purposes of comparison) the plug-flow 
profile. 

Since it is not a priori possible to distinguish between amplifying disturbances and 
evanescent waves, we cannot impose enough boundary conditions at infinity to 
uniquely determine the steady-state solution to the present problem. This will occur 
for any problem involving an ‘active system’ that can support amplifying waves 
(Briggs 1904) and is usually dealt with by treating the steady-state solution as the 
long time limit of the ‘causal’ solution to the appropriate initial-value problem. This 
was, in fact, done by Crighton & Leppington (1974), Munt (1977) and Cargill (1979) 
for the related problems (alluded to above) involving Kelvin-Helmholtz waves. They 
showed that there were infinitely many causal solutions, but only one that was 
non-singular at the trailing edge. The present situation is somewhat different, in that 
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the non-singular causal solution is the only solution that exists as an ordinary 
function. The ‘more singular solutions’ would have to be interpreted in the sense of 
distributions and would then involve delta function-type singularities at the edge. 
It seems to us that such solutions are easily dismissed on physical grounds. 

Far downstream in the flow the unsteady motion is described by an unimportant 
fluctuation in the overall pressure level and either the spatially amplifying Rayleigh 
wave for Strouhal numbers below cutoff or one or two neutral disturbances (one of 
which turns into the Rayleigh wave in the unstable range of Weber and Strouhal 
numbers) for Strouhal numbers above cutoff. It is interesting to note that there is 
a certain range of parameters where the neutral Rayleigh wave has upstream group 
velocity even though it appears downstream of its source (i.e. the trailing edge). 
Similar behaviour was found by Brazier-Smith & Scott (1984) but they were able to 
dismiss it as asymptotically insignificant (in the Poincar6 sense) since it always 
occurred in the presence of an amplifying disturbance which would dominate the 
negative group velocity wave. 

Steady-state analysis of flows (such as the one under consideration) that support 
amplifying waves only makes sense if imposed disturbances do not exhibit unlimited 
growth in time at any fixed point in space, that is, if the system is not ‘absolutely 
unstable ’. It is shown below that the present flow is ‘absolutely unstable ’ for Weber 
numbers below a certain critical value which increases as the profile approaches a 

The dispersion relation is found to have double roots at certain real frequencies. 
The consequences of such double roots were discussed for the case of real wave 
numbers (and complex or real frequencies) by Akylas t Benney (1980). They referred 
to it as ‘direct resonance’ and showed that it can cause a significant change in the 
behaviour of the temporally growing weakly nonlinear instability waves. The 
implications of this phenomenon for the present time harmonic solution are discussed 
in $ 5 .  

The receptivity problem is formulated in $2. It is then solved using the Wienex-Hopf 
method. The dispersion relation for the generalized Hagen-Poiseuille velocity profile 
is analysed in $3. To our knowledge, this is the first analysis of the capillary instability 
of the Hagen-Poiseuille profile, not to mention the generalized profile. A discussion 
of the coupling coefficient, the validity of the locally parallel flow assumption and 
other results are presented in $4. 

plug flow. 

2. Analysis 
2.1. Formulation 

We consider an inviscid incompressible flow of a liquid of density p and surface tension 
y, emerging from a semi-infinite duct of radius a into an evacuated region, as shown 
in figure 1. We suppose that a steady base flow, which we initially assume to be 
parallel with velocity profile U(r) ,  is subjected to a small amplitude uniform axial 
velocity fluctuation, e-iQt 

m 9 

far upstream within the nozzle. Here, r denotes the radial coordinate, which we 
assume along with all other lengths to be normalized by a, t denotes the time 
normalized by a /V ,  where n i s  the mass-averaged mean velocity, SZ denotes the 
Strouhal number based on n a n d  a, and we assume that U has been normalized by 
U s 0  that 

(2.1) 
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Since the resulting unsteady motion will be axisymmetric, it can be expressed in terms 
of a stream function +b such that 

where u and v denote the axial and radial velocity fluctuations normalized by u,, 
and x denotes the normalized streamwise coordinate. 

It is convenient to introduce the function 9 by 

$2 = + b y  (2.3) 
and it then follows from the linearized streamwise momentum equation that p, the 
pressure fluctuation normalized by puu,, is given by 

where the prime denotes differentiation with respect to r .  q5 is determined by the 
linearized vorticity equation (or Rayleigh equation) 

where 

is the Laplacian, subject to the boundary conditions of no flow through the walls 
in the duct region 

and the kinematic 

and 

v = o ;  - c o < x < o ,  

and dynamic boundary conditions 

respectively, in the jet region at r = 1, where B = p a p / y  is the Weber number and 
5 is the displacement of the jet surface relative to its undisturbed position (Drazin 
& Reid 1981, pp. 22-24). 

Since the problem is linear and we are interested only in the steady-state solution, 
q5 will have harmonic time dependence, and it is convenient to write $ as the sum 
of the solution for the forced flow in a doubly infinite duct and an unknown function 
$(l) which accounts for the free surface, as 

where Po is an arbitrary constant that sets the overall level of the pressure fluctuation 
in the duct. Then q5(l) e-tot satisfies (2.5) and it follows from (2.2)-(2.4), and (2.7)-(2.9) 
that $22 = 0 for x < 0, 

-4g2 = -iQ(+ UCz for x > 0, r = 1 
(2.10) 

(2.1 1) 1 m- U'q52)-- ( [ + ~ 2 2 )  = iax-Po for x > 0, r = 1 ,  
B 
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and $g,?+O as x+-m, 0 < r < 1, 

where 

We consider the one-parameter family of mean velocity profiles 

1 -bra 
U(r) = - 

l-@’ 
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(2.12) 

(2.13) 

(2.14) 

which produces progressively flatter profiles as the parameter b goes from 1 
(Hagen-Poiseuille profile) to zero (plug profile) and hence will serve to model the 
profile relaxation referred to in $1. It follows from (2.5) and (2.9) that #(l)/r 
satisfies 

(2.15) 

independently of b. 
As indicated in $1, we are interested in obtaining the steady-state causal solution 

to (2.10)-(2.15). We do this by using Briggs’ (1964) method, which requires that we 
allow 51 to have an arbitrarily large positive imaginary part and find the real f2 
solution by analytic continuation. We construct the relevant complex 51 solution by 
using the WienepHopf technique (Noble 1958 p. 36). 

2.2. Solution 
We introduce the half-range transforms 

(2.16) 

where the upper and lower signs go together and $+ (4-) is an analytic function in 
the upper (lower) half of the complex k-plane (Roos 1969 p. 114). Then, 

$=4++4-,  (2.17) 

is the usual (full range) Fourier transform and the boundary-value problem equations 
(2.10)-(2.15) become, upon noting that [ ( O )  = 0, 

$+ = o ,  (2.18) 

(2.19) 

(2.20) 

for r = 1, and r ( t $ ) - k e $  = 0, (2.21) 

for 0 < T < 1, where a small damping factor eie*z has been added to the forcing terms 
in the boundary condition (equation (2.11)) in order to ensure that the Fourier 
transform will exist. ia* will be put equal to zero at the end of the analysis. 

Equation (2.21) is the modified Bessel’s equation of order one for $ / r ,  so that the 
solution that remains bounded at r = 0 is 

$ = A(k)  rIl(kr). (2.22) 
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It therefore follows from (2.13), (2.14), (2.17), (2.18) and (2.22) that 
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(2.23) 

Eliminating g- and 8- between (2.19), (2.20) and (2.23) now yields 

- PQ -- i c m  (2.24) 
52 

X(k)  4- - i8+ = 
2 n ( k - i ~ * ) ~  2n(k-is*) 2@ ’ 

for Im k = 0, where 

k2(k2-  1)  
(2.25) 

l - b  

Equation (2.24) is a standard boundary-value problem for a sectionally analytic 
function. It follows from (2.18) and (2.22) that 

(2.26) 

and that A ( k ) ,  and via (2.22) the complete solution, can be found once (2.24) is solved 
for 6- . To this end we factorize x in the form 

(2.27) 

where the functions x +  and 2-  are analytic and non-zero in the upper and lower 
half-planes, respectively. 

Since the kernel X(k)  is a meromorphic function of k the factorization (equation 
(2.27)) can be performed using the Weierstrass factorization theorem (Roos 1969 p. 
174) to obtain fi (1 +i) e-k/cm 

n (1  +;) e-klpn 
x + ( k )  = m:l e$(k), (2.28) 

n-1 

and 

where 8, are the zeros of I J k  in the upper half-plane, -cm and Em are the zeros of 
x ( k ) I , ( k ) / k  in the lower and upper half-plane respectively, and &k) is an entire 
function which will be chosen so that x +  is algebraic at infinity. 

Using a numerical search for the roots of (2.25) along with formal asymptotics we 
found that 

as n+ 00. Using these results in example (3.4) on p. 128 of Noble (1958) we find that 
we must take 

(2.30) &k) = - k  C (F--), 

x -  N ( R - k - 1  k-2 as k + m .  

“ 0 1 1  

n-1 n 5 n  

(2.31) 
l - b  

and that then 
1-3 
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From (2.24) and (2.27) we can obtain 

l )  
= -+ i8+ sz (--- 1 
x+ 2x(k - i~*)~  x + ( k )  x+(.is*) 

where we have introduced the new arbitrary constant 

Since the left-/right-hand side of this equation is analytic in the lower-/upper-half 
k-plane it follows that (Noble 1958 p. 37) 

$- = (2.33) 

where E(k)  is an arbitrary entire function of k, which by Liouville's theorem (Noble 
1958 p. 6) must be a polynomial in k if q!- is to be algebraic at infinity. qP) will have 
the minimum singularity at 2 = 0 when A and consequently d- has minimum 
singularity as k+ a0 (Roos 1969 p. 150). This will occur if we put Pl = E = 0. It now 
follows from (2.19), (2.31) and the inverse of (2.16) that our original assumption of 
c(0) = 0 is indeed satisfied, while (2.22), (2.26) and (2.33) and the definition of the 
Fourier transform imply that 

(2.34) 

where we have set E* = 0 with the understanding that the contour C passes below 
the pole at k = 0. 

In  order to obtain the steady-state causal solution we must obtain the analytic 
continuation of (2.34) to ImQ = 0. For each mean velocity profile (equation (2.14)) 
there is a range of Weber numbers for which the flow is not absolutely unstable, and 
for each such Weber number there is a range of Re Q for which the flow is convectively 
unstable. In this range one of the poles of x- , say at k = a, moves from its position 
in the upper half k-plane, crosses the real axis, and ends up in the lower half-plane 
as ImQ+O. The analytic continuation of (2.34) is obtained by deforming the 
integration contour below this pole. The contour can then be moved back to the real 
axis by accounting for the residue at this pole aa 

for I m Q  = 0, where we have put 

(2.35) 

(2.36) 

In the remaining range of ReQ, i.e. the stable range, the pole moves onto the real 
axis. The result will still be given by (2.35) provided we interpret the integration 
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FIGURE 2. Movement of roots in complex plane, unstable case. 

contour as lying above the pole at  a. In  the range of Weber numbers for which the 
flow is absolutely unstable the steady-state causal solution does not exist. 

We can now obtain the complete solution for any physical quantity by substituting 
(2.35) into (2.9) and inserting the result into (2.4) or (2.2) via (2.3). 

The integrands for the Fourier transforms of the velocities and pressure at x = 0, 
r = 1 all behave at least like k-’ as k - t  00 so that (Roos 1969 p. 150) these quantities 
all remain fhite at the edge i.e. the ‘Kutta condition’ is satisfied there. Other formal 
solutions can be obtained by allowing the polynomial E and the constant P’ to be 
arbitrary, but their integrands would then be O( 1) or larger as k +  co and they would 
consequently not exist as ordinary functions. If they are interpreted in a distributional 
sense they would have delta-function-type singularities at the edge (Lighthill 1958 
p. 43). 

3. The dispersion relation 
In constructing the steady-state causal solution we had to consider the behaviour 

of one of the roots of ~ ( k )  as ImSZ-tO. However, it is of interest to consider the 
behaviour of all four roots of x that can end up on, or cross, the real axis during this 
limiting process. This behaviour varies with the profile parameter, Strouhal number, 
and Weber number under consideration. 

Figure 2 shows the loci of these roots for a case where the flow is unstable. When 
I m a  is large there are two roots each in the lower and upper half-planes. Those in 
the upper half-plane are poles of x- and consequently contribute to the solution 
(equation (2.34)) for x > 0. One of these (the one we called 01 in (2.35)) starts out in 
the upper half-plane, crosses the real axis and moves into lower half-plane as Im Q -+ 0. 
Figure 3 shows the loci of these roots for the same profile and Weber number but 
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FIQURE 3. Movement of roots in complex plane, stable case. 

at a higher Strouhal number. There is again one pair of roots in each half-plane for 
large Im 52 but the root a now moves onto the real axis when Im SZ = 0 and therefore, 
as was indicated in the previous section, represents a neutral wave. The loci of the 
roots for a third set of parameters are shown in figure 4. The flow is again stable but 
a now crosses over into the lower half-plane before turning around to end up back 
on the real axis when Im SZ = 0. The group velocity U / d k  is negative for the resulting 
neutral wave even though it appears downstream of the duct exit and consequently 
represents a downstream propagating wave. This phenomenon was discussed by 
Briggs (1964 pp. 33-34) who points out that the group velocity does not always give 
the correct direction of propagation for neutral waves in an unstable medium. 

Figure 5 shows the behaviour of the four roots of interest as Re 51 varies, with Im SZ 
fixed at a small positive value for the sake of clarity.? The velocity profile and Weber 
number are the same as in figures 2 and 3. The arrows point in the direction of 
increasing ReQ. There are two complex conjugate roots (denoted by @ and 
0) below a certain Strouhal number (the cutoff Strouhal number referred to 
in $1). One of these (root 0) is associated with the instability wave. The 
roots merge at the cutoff Strouhal number (point A in figure 5 )  to form a double 
root or saddle point of the dispersion relation at real values of k and SZ. This 
behaviour was referred to as a ‘direct resonance’ by Akylas & Benney (1980) 
who showed that it can increase the importance of the nonlinear effects. Here 
the two roots correspond to waves travelling in the same (downstream) direction 
(see figure 2), since they both move into the upper half-plane as I m Q  becomes 
large. As ReSZ increases beyond the cutoff frequency the roots separate but both 
move along the real axis until roots@and@merge and form a double root or ‘direct 
resonance’ (point B). The two roots now correspond to waves travelling in opposite 

t For example it allows us to  keep track of the roots after they merge. 



488 S. J .  Leib and M .  E .  Goldstein 

-0.2 - 

-0.4 - 

-0.6 - 

-0.8 - 
- 1.0 

b = 0, p = 3.2, Q = 0.94 

0.4 

0.2 

I I 1 1 1 1 

0.15 

0.12 

0.09 

0.06 

0.03 

C 
Im ( K )  

- 0.03 

-0.06 

-0.0s 

-0.1: 

-0.15 

b=O,B= 10 1 

B 

0 

I 1 1 1 I 1  I 1 1 1 1 
-12 0 10 

Re ( K )  

FIGURE 5. Movement of roots in complex plane aa Re GI increases. 



Generation of capillary 

0.15 r 

0 

-0.03 

Im ( K )  

-0.06 

-0.09 

-0.12 

instabilities on a liquid jet 

- a  
- 

- 

- 

- 

I 

-0.15 

I) = 0.3, = 10 

0.09 

0.03 

I I I I I I I 

489 

directions. As ReQ is further increased the roots break away from the real axis to 
form a new complex conjugate pair. The one in the lower half-plane does not, 
however, represent a spatially amplifying wave in the causal solution because (as 
shown in figure 3) it does not cross the real axis as ImQ+O with ReQ fixed. 

For reasons given in $1,  we are interested in the behaviour of the roots as the 
velocity profile relaxes toward the plug-flow profile. The movement of the roots with 
the profile shape parameter b is shown in figures 6 and 7 for two different Strouhal 
and Weber numbers. The arrows point in the direction of decreasing b. 

Root @ again corresponds to the instability wave and the movement of this root 
in the direction of the arrow corresponds to the evolution of that wave as the mean 
profile relaxes. The wave is neutral for the Hagen-Poiseuille profile (b = 1) but turns 
into a spatially growing wave whose growth rate continues to increase as the profile 
relaxes toward the plug-flow profile (i.e. as b + O ) .  The wave exhibits growth for larger 
values of b (i.e. profiles closer to Hagen-Poiseuille) at lower values of the Strouhal 
number. Note that the wave must pass through the neutral point A, where the 
dispersion relation has a double root (or saddle point), before it can exhibit growth. 
Root 0, which initially corresponds to a decaying wave, passes through the saddle 
point B before it turns into a neutral wave. 

As indicated above, the time harmonic causal solution only exists when (2.34) can 
be analytically continued by deforming its integration contour around any poles that 
cross the real axis as Im Q + O .  This will not be possible if two roots from opposite 
half-planes merge to form a double root in the lower half k-plane for some Im i2 > 0, 
because the contour will then be pinched between these roots. The steady-state causal 
solution will then not exist and the flow is said to be ‘absolutely unstable’ (Briggs 
1964 p. 20). This occurs for Weber numbers below a certain critical value which 
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FIGURE 7. Movement of roots in complex plane rn b goes from 1 to 0. 

decreases markedly as the shape parameter b + 1. The double root now corresponds 
to two waves travelling in opposite directions. 

As far as we know, the existence of absolute instability for capillary (i.e. Rayleigh) 
waves has not been previously noted - even for the plug flow profile studied by 
Rayleigh (1878) and Keller et al. (1973). 

Figure 8 shows the loci of the two relevant roots as I m B  varies for a number of 
values of ReB. It can be seen that for the particular case shown (b = 0 and B = l ) ,  
the roots merge for B in the upper half-plane with 0.74 < ReB < 0.78. 

As the Weber number is increased (with the profile shape fixed) this double root 
moves closer to the real B-axis. We refer to the minimum value of /3 for which this 
double root occurs at I m Q  = 0 for any given profile shape as the critical Weber 
number (6,. The flow is then convectively unstable for /3 > 18,. 

As in the ‘direct resonance’ discussed above, the double root of the dispersion 
relation occurs at real values of B when /? = /3, and can consequently have a profound 
effect on the steady state, i.e. time harmonic, weakly nonlinear or weakly non-parallel 
solution for the capillary waves. However, it now occurs a t  a complex value of k and 
results from the coalescence of roots associated with waves travelling in opposite 
d i r e c t i m .  It is therefore more like the resonance at point B in figures 5-7 than at  
the neutral point A. Figure 9 is a plot of the critical Weber number as a function 
of b. 

The wavenumber and growth rate of the instability wave are given by the real and 
imaginary parts, respectively, of the root a of x. They are plotted as a function of 
Q for various Weber numbers and profile shape parameters in figures 10-17. Figures 
10-13 show that the maximum growth rate decreases and shifts to lower Strouhal 
numbers with increasing Weber number for a given profile shape. The plug-flow profile 
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FIQURE 18. The stability regimes in the (a, /3)-plane for 6 = 0. 

(b  = 0) is clearly much more unstable than the Hagen-Poiseuille profile in terms of 
both growth rates and range of unstable frequencies. The unstable Weber numbers 
are also very small in the latter case. There is virtually no growth for realistic values 
of /3 but, as explained in $1,  the neutral disturbances can ultimately turn into 
amplifying waves as the profile relaxes toward a plug flow. 

Figures 14-17 show that the wavelengths of the instability waves decrease with 
increasing Strouhal number, while being relatively independent of Weber number and 
mean profile shape. 

Figure 18 summarizes the stability regimes in the (i2,/3)-plane for the plug-flow 
profile. The critical Weber number for this profile (/3, = 3.15) divides the plane into 
a region of absolute instability (8, < 3.15) and a region of convective instability 
(p, > 3.15). The cutoff Strouhal number separates the stable and unstable regimes 
for /3 > 8,. Also shown is the area (within the stable regime) where the neutral waves 
have negative group velocity. It does not persist beyond Weber numbers of about 
10, where the cutoff Strouhal number is equal to unity independently of the Weber 
number. 

4. Discussion 
The constant C in (2.36) is equal to the streamwise velocity of the instability wave 

(or of the neutral disturbance that turns into the instability wave) at the origin 
(z, T )  = (0,O) normalized by the imposed streamwise velocity fluctuation at upstream 
infinity. We refer to it as the‘coupling coefficient’ since it measures the efficiency of 
the instability wave-generation process. Equation (2.36) was used to obtain numerical 
values for C. 

01 and the cm were obtained using the Newton-Raphson method to find the zeros 
of ~ ( k )  I,(k) for various values of the Strouhal and Weber numbers. x+(a) was then 
calculated from (2.28) and x’(01) from the derivative of (2.25). These results were 
combined in (2.36) to calculate C at a given SZ and /3. 

The absolute value of this quantity is plotted for a Hagen-Poiseuille profile in figure 
19 over the range of unstable Weber and Strouhal numbers and over the stable range 
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FIQURE 19. Coupling coefficient as a function of f2 for a number of /?-unstable range. 
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FIQURE 20. Coupling coefficient as a function of f2 for a number of /?-stable range. 

in figure 20. Figure 21 is a plot of ICl in the unstable range for the plug-flow profile. 
It is worth noting that 2- has a second-order pole at  the cutoff Strouhal number, 
which corresponds to the double root ‘direct resonance’ at this point that was 
discussed in $3. JC( is relatively independent of D and /3 for /3 greater than about one, 
except in the immediate vicinity of the cutoff frequency where it becomes quite large. 
As the Weber number increases, IC( approaches a value of about 0.5 for the 
Hagen-Poiseuille profile and 0.25 for the plug profile. 

Koch (1985) recently suggested that vortex shedding from a blunt body may be 
related to the occurrence of a double root of the dispersion relation associated with 
an absolute instability of an appropriate family of wake profiles that describe the 
mean wake as it evolves downstream. As explained above, the relevant double root 
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FIGURE 21. Coupling coefficient as a function of L! for a number of 8-unstable range. 

occurs at a real frequency and is associated with the profile at the ‘resonance point ’ 
that forms the boundary between the region of absolute instability and the region 
of convective instability. 

While Koch (1985) found that the corresponding frequencies are in good agreement 
with experimentally observed vortex-shedding frequencies, his model suffers from the 
conceptual difficulty that the flow is absolutely unstable between the trailing edge 
and the ‘resonance point’, implying that the intermediate profiles in his analysis 
would not occur in practice. 

But the situation is just the reverse in the present case, i.e. the flow is convectively 
unstable upstream of the ‘resonance point ’ and absolutely unstable downstream 
(provided, of course, that the Weber number is in the range where the plug-flow profile 
is absolutely unstable and the Hagen-Poiseuille profile is not). Then, as the mean 
flow relaxes from the latter to the former, a point is reached where the local profile 
just becomes absolutely unstable and the dispersion relation has a double root or 
saddle point at  real Q. 

We might expect, in view of Koch’s (1985) success in predicting vortex-shedding 
frequencies, that the double root in the present flow will be associated with some 
natural droplet formation process, but this needs to be studied further. Notice, 
however, that the critical Weber number & is always rather small, so that it might 
be difficult to achieve the relevant conditions in the laboratory. 

The downstream propagating wave will be neutral on the Hagen-Poiseuille profile 
that exists at the nozzle exit for Weber numbers above the maximum critical Weber 
number (i.e. for Weber numbers where the flow is everywhere convectively unstable). 
There will then be a downstream position where the Strouhal number of the 
disturbance coincides with the ‘cutoff’ Strouhal number for the local profile and, as 
pointed out in $3, the flow will then exhibit a ‘direct resonance’ associated with the 
coalescence of two waves travelling in the same direction. 

Unlike the previous case, the entire flow is now convectively unstable and the 
Weber number can be fairly large so that, on the face of it, one might expect these 
conditions to be achievable in the laboratory. But we expect that the relevant double 
root only occurs because the idealized profile considered herein has no critical layer 
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and that the branch cut associated with this critical layer would eliminate the need 
for one of the roots that comprises that particular double root of the dispersion 
relation (Lin 1955 pp. 125-135). The alteration in the nonlinear behaviour that would 
have resulted from the ‘direct resonance’ will, for a more realistic profile, manifest 
itself as a nonlinear critical layer phenomenon (Benney & Bergeron 1969). 

The numerical computations show that the coupling between the imposed distur- 
bance and the downstream travelling wave triggered at the trailing edge is more 
efficient for the Hagen-Poiseuille profile (by a factor of about 2 for large /?). It might 
therefore seem advantageous to make the nozzle long enough to achieve fully 
developed flow when attempting to acoustically excite the jet. But very large 
coupling coefficients can be achieved for any exit profile if the jet is excited at the 
cutoff frequency, and the effects of the smaller coupling at other frequencies will, in 
any case, always be overcome by the much larger growth rates that occur on the flatter 
profiles. Figures 10 and 13 show that the maximum growth rate for the plug-flow 
profile is nearly four times larger than that for the Hagen-Poiseuille profile and that 
the unstable Strouhal number range is about three times larger. 

The relaxation of the mean velocity profile was modelled using (2.14) and allowing 
the parameter b to vary between 1 and 0. To obtain some idea of the lengthscale over 
which the profile relaxation occurs we note that Scriven & Pigford (1959) made 
measurements of liquid-jet diameters and estimated the downstream distance at 
which the plug-flow profile was reached. They found that the velocity profiles became 
flat at about 60 nozzle radii downstream (for Reynolds numbers of around 250). Since 
the instability waves have wavelengths of the order of the radius this shows that the 
profile relaxation takes place over many wavelengths and consequently that the 
slowly varying approximation is valid. 

Scriven & Pigford’s (1959) results also suggest that b - zf as z+ a. Hence b goes 
to zero like the inverse square root of the streamwise coordinate in the final approach 
to the plug-flow profile. 
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